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Abstract

The evolution of mean relative humidity (RH) is stud-
ied in an isobaric system of clear and cloudy air mixed
by an incompressible velocity field. A constant droplet
radius assumption is employed that implies a sim-
ple dependence of the mixing time-scale, τeddy, and
the reaction (evaporation) time-scale, τreact, on the
specifics of the droplet size spectrum. A dilemma
is found in the RH e-folding time, τefold, predicted
by two common microphysical schemes: models that
resolve supersaturation and ignore subgrid correla-
tions which gives τefold ∼ τreact, and PDF schemes
that assume instantaneous evaporation and predict
τefold ∼ τeddy. The resolution of this dilemma, Mag-
nussen and Hjertager (1976)’s EDC model τefold ∼
max(τreact, τefold), is revealed in the results of 1D
eddy-diffusivity simulations and a new PDF approach
to cloud mixing and evolution in which evaporation is
explicitly resolved and the shape of the PDF is not
specified a priori. The EDC model is shown to ex-
actly solve the non-turbulent problem of spurious pro-
duction of cloud-edge supersaturations described by
Stevens et al. (1996), and produce good results in the
more general turbulent case.
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1. Introduction

It is assumed that an intermittent eddy struc-
ture is present in the flow. Liquid and vapour
is assumed to be present in a near equilib-
rium state in certain eddies, while gas and
superheated vapour is present in other ed-
dies. Thus the rate of evaporation is lim-
ited by the rate of heat and mass trans-
fer between these eddies. [Magnussen and
Hjertager (1979, pp. 416)]

The evaporation rate of cloud droplets mixing
with entrained air at high turbulent Reynolds num-
bers is unresolved at the grid-scale of most mod-
els, but its accurate prediction is of consequence
to the much larger scale issues of cloud radiative
forcing (Stephens 2005) and indirect aerosol effects
(Lohmann and Feichter 2005). The numerical pre-
diction of subgrid evaporation is typical of a broad
class of problems that involve the representation of
sub-centimeter-scale microphysical interactions and
aerosol transformations at resolution scales of 10 m
to 100 km. Rigorous mathematical analysis based
on scale-separation can provide new insights (Majda
and Souganidis 2000) but its general applicability to
dynamic multiscale geophysical phenomena has yet
to be determined.

One approach to improve the representation of
cloud processes in numerical models involves the di-
agnosis or prognosis of subgrid moist convection and
cloud amount from resolved quantities. A variety of
this class of cloud scheme utilizes assumed distri-
butions of subgrid quantities—specified by low-order
moments—to provide a self-consistent diagnosis of
a variety of in-cloud average and cell-average quan-
tities (Sommeria and Deardorff 1977; Mellor 1977;
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Jeffery and Austin 2003). This approach falls under
the general moniker of Probability Density Function
(PDF) methods.

To date, all implementations of PDF methods in
subgrid cloud modeling have employed an “instanta-
neous” condensation and evaporation (C&E) rate as-
sumption to diagnose liquid water mixing ratio (ql):

ql ∼ Γ(qt − qs){qt − qs} (1)

where Γ(y) = {0, 1} for {y < 0, y ≥ 0} is a step-
function, and total water mixing ratio (qt) and satura-
tion mixing ratio (qs) assume a distribution of values
in each grid cell. Hereafter, we refer to Eq. (1) as the
Instantaneous C&E (InC&E) assumption.

The overall goal of this series of papers is to study
cloud mixing and evolution using PDF methods in
which (i) turbulent mixing and C&E are explicitly re-
solved, i.e. the InC&E assumption is relaxed, and (ii)
the PDF shape is not specified a priori. In this re-
gard, it is of value to introduce a central theme that
will emerge in this series:

The lack of explicit spatial information in the
PDF approach is, simultaneously, both its
greatest strength and greatest limitation.

By discarding spatial information, PDF methods avoid
the traditional numerical and computational issues
that hinder the Eulerian modeling of multiscale sys-
tems. But at the same time, PDF evolution equa-
tions reveal a new class of statistical quantities—
conditional moments—that must be “modeled” and
that may depend on implicit spatial structure and evo-
lution.

This article is concerned with the isobaric evapora-
tion rate of cloudy air and its numerical prediction as
specified by the evolution of relative humidity (RH).
We therefore define evaporation rate as the rate of
evolution of the mean relative humidity, RH, of a grid-
cell with internal mixing. The definition of the C&E
time-scale, τefold, follows as the e-folding time of RH
evolution.

This work begins with the observation that the
evaporation rate predicted by (i) PDF schemes that
utilize the InC&E assumption, and (ii) schemes that
resolve supersaturation, S, and ignore subgrid cor-
relations, disagree. We refer to this observation as
the C&E time-scale dilemma: two common subgrid
cloud modeling assumptions, that are in some sense
archetypal, are inherently inconsistent. The cen-
tral thesis of this work is that two distinct modeling
approaches (i) 1D eddy-diffusivity modeling and (ii)
PDF modeling with resolved mixing and evaporation,
both suggest a solution to this dilemma—a solution
that is originally due to Magnussen and Hjertager

(1976) and that has been independently developed in
the combustion literature. Following Magnussen and
Hjertager, we refer to the modeling approach that uni-
fies the treatment of cloud evaporation in PDF-based
and resolved-S microphysical schemes as the Eddy
Dissipation Concept (EDC).

Before proceeding to the outline of this article, it
is of value to first introduce the concepts and no-
tation of the PDF approach and the modeling chal-
lenges therein. Assuming that droplet radius remains
approximately constant during mixing, Reynolds de-
composition and averaging gives an equation for RH

that contains the correlationN ′RH′ in the C&E source
term where N is droplet concentration, a prime de-
notes a centered fluctuating quantity, and an overbar
denotes a spatial average. In contrast, our develop-
ment of the PDF equation for RH in Sec. 4a produces
the conditional quantity

〈
N |R̃H = RH

〉
,

hereafter 〈N |RH〉 for notational convenience, where
〈·|R̃H = RH〉 represents a spatial or ensemble av-
erage of the random RH field, R̃H(x, t), where the
condition R̃H = RH holds.

Modeling conditional quantities is a formidable
challenge but we are guided by boundary conditions
in this task. In this work we consider the isobaric mix-
ing of two uniform masses of clear (RH = RHenv,N =
0) and cloudy (RH = 1,N = Nc) air in the absence
of sedimentation and inertial effects. Then parame-
terization of 〈N |RH〉 must obey boundary conditions
〈N |RHenv〉 = 0, 〈N |1〉 = Nc and normalization

N ≡
∫

P(RH)dRH 〈N |RH〉 ,

where P(RH)dRH is the probability of finding R̃H ∈
[RH,RH + dRH]. These boundary conditions and
normalization provides guidance during model de-
velopment. Once modeled, the conditional quantity
〈N |RH〉 influences RH evolution according to

N ′RH′ ≡
∫

P(RH)dRH
{
〈N |RH〉 −N

}
RH.

This article is organized as follows. In Sec. 2
we consider the isobar mixing of clear and cloudy
air in a single grid cell and we derive the evapo-
ration rate predicted by (i) PDF schemes that uti-
lize the InC&E assumption [Sec. 2a] and (ii) micro-
physics models that resolve S and ignore subgrid
correlations [Sec. 2b]. In Sec. 2c we introduce the
Damköhler number—the ratio of mixing and reaction
(evaporation) time-scales—which facilitates a com-
parison of PDF and resolved evaporation rates for a
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range of atmospheric conditions. In Sec. 3 we study
the evaporation rate predicted numerically by a sim-
ple 1D eddy-diffusivity model for various initial condi-
tions and diagnosed mixing time-scales; the results
of this study are shown to be consistent with Mag-
nussen and Hjertager’s EDC model. In Sec. 4 we
present a new model of cloud mixing and evaporation
based on the evolution of the PDF of RH, and the im-
portant role of conditional averaging in this approach
is highlighted. In Sec. 5 we test the efficacy of the
EDC model in the Stevens et al. (1996) scenario of
cloud-front propagation and evaporation; Sec. 6 con-
tains a summary.

2. The C&E time-scale dilemma

In this section we consider the isobar mixing of clear
and cloudy air in a single grid cell. The PDF scheme
is assumed to describe the grid cell evolution in terms
of subgrid fields θl(x, t) and qt(x, t), while the re-
solved scheme that is often employed in LES/CRM
models uses θ(x, t) (or equivalently temperature) and
qv(x, t). It is often assumed that the LES/CRM sub-
grid modeling assumption is grid-cell homogeneity,
i.e. θ = qv = constant (Krueger 1993). However, this
assumption is overly restrictive; our approach here is
to formally add subgrid turbulent mixing and evolution
to a single LES/CRM grid cell which retains the sym-
metry between the PDF and LES/CRM approaches.

2a. The InC&E assumption and its implications

Consider, first, the C&E time-scale implied by subgrid
PDF schemes that use the InC&E assumption with
prognostic equations for the subgrid variance of qt

and liquid water potential temperature, θl, in a closed
cell. Assume, furthermore, that these prognostic
equations predict the evolution of variance without
error, i.e. the prediction of the PDF scheme is con-
sistent with the exact evolution of the subgrid fields
{θl(x, t), qt(x, t)}. Then beginning with advection-
diffusion equations for {θ, qv}, assuming molecular
diffusion of ql, linearizing fluctuations of q−1

s and qs(T )
about the mean and introducing a molecular diffusiv-
ity, κ ≥ 0 (assumed equal for qv and θ) leads to an
equation for the variance of RHt, var(RHt):

∂var(RHt)

∂t
= −2χ

χ ≡ κ|∇RHt|2,
(2)

where RHt = qt/qs, overbar denotes a spatial aver-
age and χ is the scalar dissipation rate† Equation (2)

†For analytic convenience we define χ as the dissipation rate of
half variance. Note that Eqs. (2) and (3) both assume temperature

illustrates the key dynamical features of subgrid PDF
schemes that utilize the InC&E assumption, namely,
var(RHt) decays to zero with a turbulent mixing time-
scale

τeddy ≡ var(RHt)/χ,

that is unresolved and must be modeled. Thus the
evaporation rate is largely determined by τeddy and is
independent of the microscopic phase-change (reac-
tion) time-scale, τreact, which is assumed zero in the
InC&E limit.

We are thus led to the following conclusion:

The evaporation rate of unmixed clear and
cloudy air predicted by a PDF scheme and
the InC&E assumption in a grid cell with in-
ternal unresolved divergenceless advective-
diffusive mixing depends on τeddy and is in-
dependent of τreact.

2b. Resolved evaporation rates and the C&E
dilemma

High resolution cloud models, e.g. Large Eddy Sim-
ulation (LES) of clouds, and somewhat coarser reso-
lution Cloud Resolving Models (CRMs), often explic-
itly resolve τreact. While it is typically assumed that
LES/CRM assume subgrid homogeneity, we relax
this assumption here and consider an isobaric model
grid cell, mixed by internal velocity u and molecular
diffusivity κ, that has an externally specified intra-cell
flux, Φflux, and is otherwise closed, i.e. ∇RH = u = 0
on cell faces.

∂RH

∂t
+ u · ∇RH = −∇ · Φflux + κ∇2RH +

1 − RH

τreact

τreact(x, t) ≡ 1

4πDvN

r + a

r2
,

(3)
where Dv is the (assumed constant) diffusivity of wa-
ter vapor, a is an accommodation length introduced
for analytic convenience and the small temperature
dependence of τreact has been ignored.

The time-scale τreact was first introduced by
Squires (1952) and termed the phase relaxation time.
It plays a central role in the results of Wang et al.
(2003).† Wang et al. argue that the effective time-
scale over which turbulence mixing can affect the
cloud liquid water flux is (1/τreact + 1/τR)−1 (Wang
et al. 2003, pp. 270) where τR is the cloud-scale
large-eddy turnover time and should not be confused
with the subgrid mixing time τeddy.

The behavior described by Wang et al. is con-
sistent with all current models that resolve RH and

fluctuations T ′ � RvT
2

/Lv .
†Note that ρl is non-dimensional (water density divided by air

density) in Eq. (18) of Wang et al. (2003)
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ignore subgrid correlations as the following proof
demonstrates. We first note that these cloud param-
eterizations replace the subgrid spatio-temporal field
τreact(x, t) with its grid cell average τreact(t)—an as-
sumption that is less restrictive than assuming sub-
grid homogeneity. Averaging Eq. (3) with this as-
sumption and solving the resulting ODE gives the
longtime behavior

RH(t) =

∫ t

dξ exp

[
−
∫ t

ξ

dξ′ τreact
−1(ξ′)

]

{
1

τreact(ξ)
− 1

V

∫
dλ x̂ ·Φflux(λ, ξ)

}
,(4)

where V is the grid cell volume,
∫

dλ is a surface in-
tegral over cell faces and x̂ is a unit-vector normal to
the cell face at λ.

Eq. (4) is a function of two distinct time-scales:
τreact (t) and the grid-scale time, τR, associated with
Φflux. Inspection of Eq. (4) reveals that the RH
“evolution rate” predicted by the subgrid assumption
τreact(x, t) → τreact(t) is consistent with Wang et al.’s
response time (1/τreact + 1/τR)−1. Of central impor-
tance, the evaporation rate predicted by Eq. (4) is
given solely by τreact; the subgrid mixing time asso-
ciated with advective-diffusive mixing, i.e. u and κ,
does not appear in (4). Also, since (4) is indepen-
dent of the variability in the subgrid RH field it fol-
lows that the assumption of subgrid homogeneity is
a special case of this more general result. It must
be emphasized that the independence of evapora-
tion (reaction) rate and κ implied by Eq. (4) is specific
to advective-diffusive reaction that is linear combined
with τreact(x, t) → τreact(t); reaction rates for explicitly
non-linear reactions will always depend on κ, regard-
less of the subgrid modeling assumptions employed.

The above results lead us to the following conclu-
sion:

The evaporation rate of unmixed clear and
cloudy air predicted by current S-resolving
microphysical schemes in a grid cell with in-
ternal unresolved divergenceless advective-
diffusive mixing depends on τreact and is in-
dependent of τeddy.

This statement contradicts the conclusion of Sec. 2a.
Moreover, it reveals the following dilemma. Both the
InC&E assumption—as its name implies—and the
resolved-S model of evaporation in the limit τreact →
0 are considered to converge to the “fast reaction”
limit of divergenceless advective-diffusive evapora-
tion. Yet these two models predict different evapo-
ration rates in this limit. This is what we refer to as
the C&E time-scale dilemma: two common subgrid
cloud modeling assumptions, that are in some sense
archetypal, are inherently inconsistent.

2c. Damköhler number

Of central importance in this work is the Damköhler
number (Damköhler 1940)

Da =
mixing time-scale

reaction time-scale
,

which provides insight into the fundamental nature of
mixing and evaporation in clouds. In what follows we
choose to define Da in terms of the in-cloud number
concentration

Da = 4πDvNc
r2

r + a
τeddy, (5)

where Nc is the cloud-averaged (as opposed to grid-
averaged) number concentration. This definition of
reaction time-scale differs from τreact which involves
the grid-averaged concentration, N , but is advanta-
geous because Nc is often measured experimentally
and is more easily estimated. An estimation of the
range of Da as defined in Eq. (5) provides insight into
relative differences in evaporation rate predicted by
PDF and resolved-S models.

Two contour plots of Da are shown in Fig. 1 where
standard Kolmogorov scaling provides the estimate,
τeddy = 0.1ε−1/3L2/3 with L the grid cell length and ε
the kinetic energy dissipation rate. The plots indicate
that Da spans four orders of magnitude in the range
10−2 to 102 for a broad range of {L,Nc, r} values and
ε = 0.01 m2 s−3. In particular, an indirect aerosol ef-
fect is observed with Da increasing linearly with N
at fixed r (N2/3 at fixed ql) as indicated by Eq. (5).
The contour Da = 1—where we expect the PDF and
resolved models to predict similar evaporation rates
for small φsub—tends to run through a relatively nar-
row range of droplet sizes between 2 and 10 µm. For
small drops r � 2 µm the InC&E assumption predicts
greater evaporation rates than resolved-S schemes
while for large drops r � 10 um the resolved model
predicts faster evaporation than the InC&E approach.
Taken as a whole, Fig. 1 reiterates the seriousness of
the C&E time-scale dilemma: evaporation rates pre-
dicted by subgrid PDF schemes that use the InC&E
assumption and LES/CRM models that resolve S and
ignore subgrid correlations may vary more than two
orders of magnitude for realistic atmospheric condi-
tions.

3. Cloud front evaporation: Eddy-
diffusivity model

In this section we investigate cloud front propagation
and evaporation in a closed cell using a simple one-
dimensional eddy-diffusivity model. A distinguishing
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Figure 1: Contour plots of Da as a function of {r, L} for Nc = 50 cm−3 [Fig. 1(a)] and Nc = 500 cm−3

[1(b)], typical of clean marine and polluted marine/continental environments, respectively (Heymsfield and
McFarquhar 2001). Da is computed with Eq. (5), the Kolmogorov estimate τeddy = 0.1ε−1/3L2/3 and ε =
0.01 m2 s−3. The figures reveal that a range of Da values between 10−2 and 102 exist for typical atmospheric
conditions and model grid sizes.

feature of our cloud model is the assumption that
droplet radius is time-independent. Although this as-
sumption does not strictly conserve liquid water, it is
appropriate for RHt > 1, large drops and small sub-
saturations. The advantage of the constant radius as-
sumption is that it leads to cloud front dynamics that
are independent of the specifics of the droplet size
distribution.

3a. Cloud model

The cloud model of interest is given by the following
coupled PDEs:

∂RH

∂t
= κe∇2RH + εN(1− RH)

∂N

∂t
= κe∇2N,

(6)

with ∇RH = ∇N = 0 on the system boundaries,
κe ≥ 0 an eddy-diffusivity and ε ≥ 0 a constant.
The C&E source term in the RH equation follows from
Eq. (3) using the time-independent droplet radius ap-
proximation r(x, t) = constant. Following Grabowski
(1993) and Majda and Souganidis (2000) we assume
that the cloud (RH = 1, N > 0) and environmen-
tal air (RH < 1, N = 0) initially occupy disjoint re-
gions of space. Of course, the constant droplet ra-
dius assumption implies the asymptotic RH(x, t) → 1

as t→ ∞.
We consider two different sets of initial conditions:

1 Front simulations in which the system is divided
into two adjacent regions of clear and cloudy air and
2 Front simulations with two equal-sized regions of
cloudy air surrounding a region of clear air. As the
names imply, 1 Front simulations exhibit a single front
of cloudy air propagating across the system while two
such fronts exist for 2 Front initial conditions. The ini-
tial system fraction of clear (cloudy) air is denoted
by φsub (1-φsub). Following the introduction and dis-
cussion of Damköhler number in Sec. 2b we find
Da = εNcτeddy for Eqs. (6) with Nc = N(1 − φsub)−1

such that τreact/τeddy = (1 − φsub)−1Da
−1.

3b. Model predictions using τeddy ∼ L2/κe

A comparison of the RH e-folding time, τefold, pre-
dicted by Eqs. (6) is shown in Fig. 2 for φsub ∈
[0.05, 0.95]. In this comparison the mixing time-scale
is taken as τeddy ∼ L2/κe where L is the size of the
system domain. This definition of τeddy is consistent
with the subgrid large-eddy turn-over time.

Figure 2 depicts two distinct regimes of evapora-
tive behavior. For small (1 − φsub)Da [upper right
corner], mixing occurs much faster than evapora-
tion and τefold = τreact independent of τeddy. This
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Figure 2: Plot of τefold/τeddy as a function of (1 −
φsub)−1Da

−1 = τreact/τeddy predicted by Eqs. (6) with
τeddy = 0.1L2/κe. Each “finger” in the lower left
corner represent 21 different φsub values at fixed Da

with φsub ∈ [0.05, 0.95]. The fingers are not visible
in the upper right corner where rapid mixing implies
τefold = τreact independent of φsub.

is the high-resolution limit where the approximation
τreact(x, t) = τreact(t) is valid since the system is well-
mixed for t� τeddy. In contrast, for large (1−φsub)Da

[lower left corner] evaporation occurs faster than mix-
ing and τefold appears to cluster in the range {0.01, 1}
τeddy independent of τreact. This is consistent with the
behavior of subgrid PDF methods that use the InC&E
assumption. We also find that τefold for the 2 Front
simulations is persistently smaller at large Da than
the 1 Front τefold for a given {Da, φsub}. This behavior
is expected since the 2 Front simulations have—as
their name implies—approximately twice the interfa-
cial area between clear and cloudy air for evaporation
to occur.

To help clarify the relationship between predictions
of the resolved-S and InC&E models and the behav-
ior of Eqs. (6), the predictions of these models are
also shown in Fig. 2. The τefold predicted by resolved
schemes is simply the 1-to-1 line (dashed) in the fig-
ure. It is more difficult to determine τefold predicted by
the InC&E assumption since Eqs. (6) do not strictly
conserve qt. However, assuming that the constant

radius approximation is consistent with a net change
in ql between 1 and 30% (∆ ln r ∈ [0.003, 0.112]) and
integrating over φsub gives the two shaded regions
in Fig. 2 as described in Appendix A. These addi-
tional comparisons reiterate that τefold predicted by
Eqs. (6) is consistent with typical LES/CRM models
for (1 − φsub)Da < 1 and the InC&E assumption for
(1 − φsub)Da > 1, and inconsistent otherwise.

3c. Model predictions using τeddy ∼ var(RH)/χ

Inspection of Fig. 2 reveals an unsatisfactory as-
pect of the simulation results. Namely, τefold appears
to exhibit a strong dependency on initial conditions,
i.e. 1 Front vs 2 Front, for a given φsub. These sub-
grid initial conditions are, in general, unknown.

Motivated by the discussion of the InC&E assump-
tion in Sec. 2a we introduce the mixing time-scale

τeddy =
1

τefold

∫ τefold

0

dt
var(RH)

χ
, (7)

with scalar dissipation rate χ = κe|∇RH|2; Eq. (7)
describes a time-averaged measure of the rate of
RH variance erosion during advective-diffusive mix-
ing. C&E time-scales for φsub ∈ [0.05, 0.95] are shown
in Fig. 3 with τeddy given by Eq. (7).

Comparison of Figs. 2 and 3 reveals that
var(RH)/χ is a much more genuine measure of
scalar mixing time than L2/κe. Indeed, this should
come as no surprise since χ is an essential quan-
tity in the Oboukhov–Corrsin theory of turbulent
advective-diffusive mixing (Tennekes and Lumley
1972, Chap. 8). However, it should be emphasized
that Fig. 3 does not imply that τefold is indepen-
dent of initial conditions. Rather, given a modeled
or observed cloud-clear air interface that is complex
and potentially self-similar (fractal), Fig. 3 reveals
that just two well-defined statistical quantities—χ and
var(RH)—form the foundation of the relationship be-
tween τeddy and the resolved (or observed) features
of the interface.

3d. The Eddy Dissipation Concept (EDC) model

The results of Fig. 3 can be quantified, to first approx-
imation, by the simple expression

τefold = max{0.35τeddy, τreact}, (8)

with τeddy given by Eq. (7). Equation (8) is also valid—
but less accurate—for τeddy ∼ L2/κe.

Equation (8) resolves the C&E time-scale dilemma
described in Sec. 2b. Neither τeddy predicted by
resolved-S schemes nor the InC&E assumption are
uniformly valid. Rather, the resolved model is valid
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Figure 3: Plot of τefold/τeddy as a function of (1 −
φsub)−1Da

−1 predicted by Eqs. (6) with τeddy given by
Eq. (7). Comparison of Fig. 2 and 3 reveals that the
diagnosis of τeddy from χ provides a superior estimate
than τeddy ∼ L2/κe.

for (1 − φsub)Da < 1 and the InC&E assumption for
(1 − φsub)Da > 1.

Equation (8), albeit unexplored by the cloud
physics community, is not new. In the combustion
community, Eq. (8) is typically referred to as the
Eddy Dissipation Concept (EDC) model. It is due to
Magnussen and Hjertager (1976) who originally used
τeddy ∼ K/ε where K is kinetic energy. A variant
of Eq. (8) was suggested earlier by Spalding (1971).
The important role of χ in the evaluation of τeddy was
first emphasized by Bilger (1976) in the fast chemistry
limit, Da → ∞.

A quotation from Magnussen and Hjertager (1979),
reproduced at the start of this article, provides a phys-
ical interpretation of EDC for the turbulent evolution of
a two-phase (liquid-vapor) mixture injected into a hot
gas stream at large Da. Magnussen and Hjertager
recognize that when the liquid-vapor mixture comes
into contact with the hot gas, the liquid will rapidly
evaporate (τreact → 0). They conclude that the net
evaporation rate for the system (τefold) is therefore
controlled by the rate at which the liquid-vapor mixes
into the hot stream (τeddy). This is the fundamental
nature of reactive advective-diffusive mixing at large

Da for the class of non-linear reaction types that in-
cludes C&E.

3e. EDC, Broadwell–Breidenthal and reaction type

The phenomenological model of Broadwell and Brei-
denthal (1982) is based on the reaction type A +

B
k→ C with reaction rate k, where the scalar mix-

ing statics, e.g. the surface area per unit volume of
interface between the two reactants, are assumed
k-independent. In contrast, mixing of cloudy and
clear air with RHt > 1 is consistent with the reac-
tion type A + B

k→ B where A (B) represents sub-
saturated (saturated) air, respectively. In this case,
the scalar mixing statics are strongly k-dependent at
large Da because a faster evaporation rate enhances
the RH gradients across the cloud front which, in
turn, affects the statistics of the (centimeter-scale) fil-
aments where evaporation is occurring. This cloud-
front sharpening is revealed in the cumulative proba-
bility density function (CDF) that RHenv + ε < RH <
1 − ε with 0 < ε � 1 − RHenv which is a measure of
the volume fraction of RH-filaments when ∇κe = 0.

A plot of the CDF averaged over τefold is shown
in Fig. 4 for the simulations of Sec. 3c and ε =
0.01(1 − RHenv). As in Fig. 3, two distinct regimes
are evident in the small and large Da limits. For
small (1 − φsub)Da, the average system state is well-
mixed and hence the “filament” where evaporation is
occuring is the entire system volume. In contrast,
at large (1 − φsub)Da the front sharpening process
decreases the volume fraction of filaments with in-
creasing Da. This behavior—valid for RHt > 1—
contradicts the Broadwell–Breidenthal model where
the filament statistics are assumed to be independent
of τreact, and hence Da.

Unfortunately, Fig. 4 also reveals a deficiency of
the simple 1D eddy-diffusivity model used in this sec-
tion: the filament volume fraction scatters widely and,
moreover, is too high at large Da. This over-prediction
of filament volume fraction is not unexpected; the ten-
dency of eddy-diffusion to predict a turbulent trans-
port that is too smooth and overly diffusive is well
known. A new PDF model of cloud mixing is intro-
duced in Sec. 4 that corrects this deficiency.

3f. EDC and Reynolds decompositions

To conclude this section, it is of interest to recast
the subgrid approximation τreact(x, t) = τreact(t) of
Sec. 2b in terms of a Reynolds decomposition of sub-
grid quantities (Cooper 1989; Stevens et al. 1998).
Denoting centered fluctuating variables with a prime,
this approximation is rewritten S ′τreact′ = 0, in gen-
eral, or N ′S′ = 0 for the constant radius approxima-
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Figure 4: Plot of the cumulative probability that
RHenv + ε < RH < 1 − ε, averaged over τefold and
predicted by the 1 Front and 2 Front simulations of
Sec. 3c with ε = 0.01(1 − RHenv). The figure shows
increasing RH-front sharpening with increasing Da.

tion considered here.

There are two normalizing coefficients of interest,
c ∈ {c1, c2}, such that cN ′S′ is non-dimensional. The
first, c1 = (σNσS)−1 gives the standard correlation
coefficient ρ1 ∈ [−1, 1] where σX is the standard de-
viation of quantity X . Not surprisingly, N and S are
highly correlated with ρ1 ≈ 1 independent of Da (not
shown). The second coefficient, c2 = (N |S|)−1 pro-
vides a correlation coefficient ρ2 that is a measure
of the relative importance of the covariance N ′S′. In
particular, ρ2(t = 0) = 1 for the “cloud-front” initial
conditions used in this section and ρ2(t→ ∞) = 0 for
the well-mixed final state.

A plot of ρ2 averaged over τefold is shown in Fig. 5
for the simulations of Sec. 3c. The results of this fig-
ure are consistent with and compliment the results of
Fig. 3. For (1−φsub)Da > 1, N ′S′ is of relative impor-
tance (Fig. 5) and neglect of this covariance leads to
a dramatic underestimation of τefold (Fig. 3). This be-
havior reiterates that LES/CRM models which resolve
S and assume N ′S′ = 0 overestimate evaporation at
large Da.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(1 − φsub)−1Da
−1

ρ 2
10−3 10−1 101 103

1_Front Simulations
2_Front Simulations
ρ2 = 1

Figure 5: Plot of the correlation coefficient, ρ2 =
N ′S′/(N |S|), averaged over τefold and predicted by
the 1 Front and 2 Front simulations of Sec. 3c. The
correlation N ′S′ appears in the evolution equation for
RH and acts to increase τefold at large Da.

4. Cloud front evaporation: PDF
model

The simple 1D eddy-diffusivity model of cloud front
propagation and evaporation introduced in Sec. 3 re-
veals a C&E phenomenlogy with distinct small and
large Damköhler number limits, in agreement with the
EDC model introduced three decades ago by Mag-
nussen and Hjertager. Yet, a fundamental objec-
tion to this simple modeling approach can be raised:
eddy-diffusion is a mean-field (i.e. ensemble aver-
aged) model of turbulent transport that should not be
expected to hold in the large Da limit where front-
sharpening leads to steep gradients and possibly
“non-diffusive” transport and behavior. Thus the con-
sistency of EDC and non-diffusive front sharpening
with increasing Da has yet to be established.

In this section we introduce a new class of cloud
modeling based on PDF methods in which the im-
pact of advective-diffusive mixing on the shape of the
PDF is explicitly resolved (modeled). Thus our ap-
proach differs from all past PDF-based cloud physics
schemes where the PDF shape is specified, a pri-
ori, to obey a specified analytic form. We further
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demonstrate that our new PDF model is consistent
with both EDC behavior and RH-front sharpening that
increases strongly with increasing Da.

4a. PDF equations and conditional averaging

Conditional averaging only appears in equations for
PDFs that have been spatially averaged or coarse-
grained in some sense. As a pertinent example,
consider the contribution of C&E to the evolution of
droplet size distribution, n(r), as written by Stevens
et al. (1998):

∂n(r,x, t)

∂t
= − ∂

∂r

[
r1/3n(r,x, t)L(x, t)

]
,

where L(x, t) is a single-valued scalar function.
Stevens et al. (1998) apply a Reynolds decomposi-
tion to arrive at

∂〈n〉(r,x, t)
∂t

= − ∂

∂r

[
r1/3〈n〉(r,x, t)〈L〉(x, t)+

r1/3 〈n′(r,x, t)L′(x, t)〉
]
, (9)

where 〈·〉 represents either ensemble averaging or
spatial averaging centered at x. The density 〈n〉 thus
represents a “coarse-grained” PDF defined over a
distribution of unresolved L′ values.

To reveal the conditional average in Eq. (9) it is use-
ful to introduce the field r̃(x, t) distinct from the argu-
ment r of the density n. Substitution of the Dirac delta
function, δ(r − r̃) ≡ n(r), clarifies the following alge-
braic manipulation:

〈n′(r,x, t)L′(x, t)〉 ≡ 〈[δ{r − r̃(x, t)} − 〈n〉]L′(x, t)〉

=
〈δ{r − r̃(x, t)}L′(x, t)〉

〈δ{r − r̃(x, t)}〉 〈δ{r − r̃(x, t)}〉

≡ 〈L′(x, t)|r〉 〈n〉(x, t). (10)

Eq. (10) is thus a restatement of Bayes’ classic theo-
rem. The conditional average 〈L′(x, t)|r〉 appears on
the rhs of Eq. (10) as the single unresolved quantity
requiring parameterization.

With the preceding discussion in mind, we intro-
duce the PDF equation for RH, in general form (Kil-
menko and Bilger 1999, Eq. (41)):

∂P(R̃H = RH, t)

∂t
= − ∂

∂RH

[〈
∂R̃H

∂t

∣∣∣∣∣ R̃H = RH

〉
P(RH, t)

]
,

where R̃H(x, t) is the spatio-temporal RH field, 〈·〉
represents a subgrid spatial average and P(RH, t) is
a spatially independent (averaged) density function
with angular brackets dropped for notational conve-
nience.

Substitution of Eq. (3) with no-flux boundary condi-
tions gives
〈
∂R̃H

∂t

∣∣∣∣∣RH

〉
= κ

〈
∇2R̃H|RH

〉

+4πDv

〈
Nr2

r + a

∣∣∣∣RH

〉
(1 − RH).(11)

where we have used 〈u · ∇R̃H|RH〉 = 0 (Kilmenko
and Bilger 1999, Eq. (37)). Evaluation of these condi-
tional averages is the subgrid modeling challenge for
the RH-PDF with RH evolution given by Eq. (3).

4b. Evaluation of conditional advection-diffusion

Advective-diffusive mixing impacts P(RH) solely
through the conditional Laplacian 〈∇2R̃H|RH〉—the
RH Laplacian averaged on level-sets of RH. The con-
ditional Laplacian has proved challenging to model.
Evaluation using a Gaussian closure [also known as
the linear mean-square estimation (LSME) model;
see Larson (2004)] produces unsatisfactory behav-
ior unless P is strictly Gaussian itself. While LSME
and other models exhibit damping of scalar fluctua-
tions, relaxation toward near-Gaussian statistics has
proved difficult to capture.

In this series we evaluate 〈∇2R̃H|RH〉 using Chen
et al. (1989)’s mapping closure. In this method, the
single point statistics of R̃H(x, t) are mapped to a
time-independent Gaussian random field R̃H0(x) us-
ing a time-dependent mapping RH = X(RH0, t).
Once X is established, P is given by

P(R̃H = RH, t) = P0(R̃H0 = RH0) (∂X/∂RH0)
−1
,

(12)
where P0 denotes the single-point PDF of the cen-
tered Gaussian random field. Closure is achieved by
assuming that the (unknown) spatial statistics of R̃H

are the same as the surrogate field R̃H0. In particular,
this implies

〈∇2R̃H|RH〉 = 〈∇2R̃H0|X(RH0)〉.

Using this approach, the evolution equation for X is
an explicit function of the spatial statistics of the sur-
rogate field. Chen et al. derive

∂X

∂t
= χ0

(
− RH0

〈R̃H
2

0〉
∂X

∂RH0
+

∂2X

∂RH2
0

)
+Q(X), (13)

where χ0 ≡ κ〈|∇R̃H0|2〉, corresponding to the
conditionally-averaged advection-diffusion equation,
(11), with source term Q(R̃H). The final step in the
derivation relates χ and χ0, using either Gaussian re-
lations (Chen et al. 1989) or direct evaluation of 〈X2〉
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in (13):

χ = χ0

〈
(∂X/∂RH0)

2
〉
.

Note that a complete closure requires independent
specification of χ which we discuss in Sec. 4d.

Eq. (13) reveals the essential physics of X evolu-
tion. The first term on the rhs of (13) advects X away
from RH0 = 0 toward both +∞ and −∞. In addition,
diffusion smooths the features of X leading to near-
Gaussian statistics via Eq. (13). This is the essen-
tial feature of mapping closure that assures physically
reasonable behavior: anti-diffusional behavior in RH-
space is translated into diffusional evolution in RH0-
space that is stable and mathematically well-defined.
As shown by Gao (1991a,b), this RH0-space evolu-
tion leads to a well-mixed state that is near-Gaussian
but retains some memory of its initial non-Gaussian
form, in good agreement with numerical experiment.

4c. Evaluation of conditional C&E

Continuing with the time-independent droplet radius
assumption introduced in Sec. 3, Eq. (11) shows that
〈N |RH〉 is the single conditional quantity required for
C&E evaluation. Consider an analytic parameteriza-
tion of 〈N |RH〉 of the form

〈N |RH〉 = F (t)Nc

(
RH − RHenv

1 − RHenv

)β

, (14)

for RHenv ≤ RH ≤ 1 where F (t) satisfies the normal-
ization

∫
P(RH)dRH 〈N |RH〉 = 〈N〉. Eq. (14) states

that on average the expected droplet concentration
increases with increasing RH.

The exponent β in Eq. (14) controls the relative
rate at which droplets “mix” into subsaturated regions
of largely unmixed environmental air. In particular
the limit β → ∞ implies infinitely slow droplet mix-
ing while β → 0 implies infinitely quick mixing. The
value β = 1 is an exact result for the given initial con-
ditions in the absence of C&E, sedimentation and dif-
fusive effects. Thus we expect β to be a function of
Damköhler number and to approach unity as Da → 0.

We employ the following strategy in determining
β(Da). Firstly, we estimate the asymptotic scaling
β ∼ Da

1/2 as Da → ∞ based on an analysis of
var(RH) evolution predicted by mapping closure and
Eq. (14). This analysis is presented in Appendix C.
Secondly, we find that the relation

β = 1 + 0.015Da
1/2, (15)

is consistent with EDC and the results of Sec. 3c as
shown in Sec. 4e.

4d. Specification of χ

PDF methods, including mapping closure, require in-
dependent specification of the scalar dissipation rate
χ(t). Here we use a simple Newtonian damping term

χ(t) = var(RH)/τeddy, (16)

where a time-independent τeddy is specified a priori.
Specification of a linear dependence of χ on var(RH)
is frequently employed in cloud modeling studies and
dates back to the early work of Mellor and Yamada
(1974) and Wyngaard and Coté (1974), among oth-
ers.

Combining Eqs. (13), (14) and (16) and introducing
the non-dimensional time τ = t/τeddy gives

∂X

∂τ
=

〈X2〉 − 〈X〉2〈
(∂X/∂RH0)

2
〉
(
−RH0

∂X

∂RH0
+

∂2X

∂RH2
0

)

+DaF (τ)

(
X − RHenv

1 − RHenv

)β

(1 −X), (17)

where 〈·〉 represents an ensemble average over a
normal distribution of RH0 values with unit variance,
and F (τ)–computed numerically at each time step–
satisfies F (0) = 1 and F (τ → ∞) = (1− φsub) for the
initial conditions used here. Eqs. (15), (17) and (5)
complete the specification of our new PDF model of
subgrid cloud mixing and evaporation.

4e. Results

PDF models lack explicit spatial information so they
do not suffer from the usual numerical and compu-
tational issues associated with a diverging range of
length scales that plague traditional 2D and 3D mod-
els. This advantage is illustrated by our new PDF
approach which predicts (i) front propagation across
the domain and associated evaporation limitation in
agreement with EDC and (ii) increasing front sharp-
ness with increasing Da. These phenomena are eas-
ily resolved in RH-probability-space (and numerically
in X(RH0)-space) despite the fact that the front spa-
tial structure is unresolved, and moreover, indetermi-
nate.

In our PDF approach, good quantitative agreement
between EDC and the present model is achieved, in
part, by the tuning of β in Eq. (15). This is demon-
strated in Fig. 6 which compares τefold/τeddy pre-
dicted by the PDF model with the eddy-diffusivity
model of Sec. 3c. The figure shows that both models
predict τefold becoming independent of τreact at large
Da, in agreement with EDC phenomenology. How-
ever, it is important to emphasize that the EDC be-
havior demonstrated by the present PDF model is not
merely a “tuned” phenomena. In fact, the boundary
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conditions {N(RHenv) = 0, N(1) = Nc} ensures that
N ′RH′ 6= 0, and hence τefold > τreact, for any rea-
sonable interpolation of N(RH) between these two
endpoints.
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Figure 6: Comparison of τeddy/τefold predicted by the
1 Front and 2 Front simulations of Sec. 3c, and the
new PDF model of Sec. 4d. PDF simulations com-
pute X(RH0) using Eq. (17) such that RH is an X-
weighted average over a normal RH0-distribution.

We now compare the present PDF model with the
eddy-diffusivity model of Sec. 3c to compare and con-
trast consistency in N ′S′ and filament volume fraction
predicted by these two very different approaches. A
comparison of ρ2 vs (1 − φsub)Da in Fig. 7(a) shows
good agreement over the full range of (1−φsub)Da val-
ues, although a tendency of the PDF model to predict
slight higher ρ2 values for 1 < (1 − φsub)−1Da

−1 < 10
is noted.

However, large differences are seen in the fila-
ment volume fraction (CDF) predicted by the two
approaches—a comparison shown in Fig. 7(b). In
particular, the PDF approach predicts significantly
smaller CDF values at large Da, indicative of RH-
front sharpening. The observed differences can
be interpreted as a Reynolds number effect: the
eddy-diffusivity approach predicts a turbulent trans-
port that is overly smooth at large times—with no
cascade of variance to smaller scales—and hence at
lower effective Reynolds number. However, Fig. 7(b)

demonstrates that our new PDF approach—which
does not suffer from spatial or numerical resolution
limitations—does, in fact, capture an RH-front sharp-
ening process that increases linearly with Da to good
approximation.

4f. Summary

A new PDF-based approach to subgrid cloud model-
ing is developed that appears to be a higher Reynolds
number alternative to simple 1D eddy-diffusivity mod-
eling. While both the PDF model of this section and
the eddy-diffusivity model of Sec. 3c predict similar
EDC-like behavior, our PDF approach does not ex-
plicitly suffer from spatial resolution errors associated
with RH-front sharpening with increasing Da. Taking
the PDF model as the superior model, the nature of
cloud front propagation and evaporation in the con-
stant droplet radius limit is thereby described by the
following phenomenology:

(a) τefold ∼ max(τeddy, τreact)
(b) lim

Da→∞
ρ2 → 1

(c) lim
Da→∞

CDF ∼ (1 − φsub)−1Da
−1 ∼ τreact/τeddy.

We further reemphasize that (a) is a restatement of
Magnussen and Hjertager’s EDC model while (c) is
in opposition to the Broadwell–Breidenthal picture of
cloud mixing and evaporation. In the next section, we
test (a), and hence the EDC model, using the Stevens
et al. (1996) scenario of cloud front propagation.

5. A test of EDC: spurious cloud-
edge supersaturations

We showed in Secs. 3 and 4 that LES/CRM models
using the approximation τreact(x, t) = τreact(t) under-
estimate τefold and therefore overestimate cloud front
evaporation at large Damköhler numbers. Enhanced
numerical prediction of C&E at cloud edges—and
resulting instabilities—was first studied by Klaassen
and Clark (1985). Subsequent work focused on the
application of monotonic advection schemes to miti-
gate these instabilities (Grabowski 1989; Grabowski
and Smolarkiewicz 1990; Grabowski and Clark
1991). But not until the study of Stevens et al. (1996),
was a purely non-advective mechanism for spurious
cloud-edge supersaturation exposed.

Stevens et al. consider the non-diffusive propa-
gation of a cloud front across a 1D grid cell at con-
stant velocity (U ) as described by the triplet {θl, qt, r}.
Following past studies they investigate the evolu-
tion of the corresponding grid-cell averaged quanti-
ties {Θl, Qt, R} with one novel difference—Stevens
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Figure 7: Comparison of the 1 Front and 2 Front simulations of Sec. 3c with the new PDF model of Sec. 4d.
Fig. 7(a) shows the correlation coefficient, ρ2 = N ′S′/(N |S|), averaged over τefold, while Fig. 7(b) shows the
cumulative probability that RHenv + ε < RH < 1 − ε, averaged over τefold with ε = 0.01(1 − RHenv). The
eddy-diffusivity simulations—which appear to overestimate the CDF at large Da in Fig. 7(b)—are, ostensibly,
of lower effective Reynolds number than the corresponding PDF simulations.

et al. diagnose the grid-scale advective tendency
without approximation, i.e. U∇Ψ = U∇ψ where the
pair {Ψ, ψ} is one of the three thermodynamic param-
eters. By assuming that advection can be performed
perfectly at the grid-scale, the effect of subgrid mod-
eling assumptions is, thereby, isolated. The Stevens
et al. scenario, generalized to include turbulent eddy-
diffusive mixing, provides an additional framework to
study the effectiveness of the EDC model.

5a. Modified Stevens et al. model

Stevens et al. observe large fluctuations in RH when
C&E at the grid-scale is evaluated using {Θl, Qt, R}.
As shown in their Fig. 3(b), supersaturations reach
4% and, quite counter-intuitively, supersaturation os-
cillations increase with decreasing τ where τ is the
time required for the cloud front to propagate across
the grid cell. Stevens et al. attribute these large fluc-
tuations in S to the logical consequence of driving mi-
crophysical forcings with grid-averaged supersatura-
tions. However, there is an additional forcing in their
study that is causing S to exceed 1%, namely, the ap-
proximation Ql ∼ R3 [their Eq. (4)] used in the calcu-
lation of T from Θl(Ql). The exact advective tenden-
cies of {Ql, R} are linear in time while the approxima-
tion Ql ∼ R3 gives Ql ∼ t3, an underestimation as

seen in their Fig. 3(d). By underestimating the advec-
tive tendency of Ql, Stevens et al. underestimate T
[Fig. 3(a)] and overestimate RH [Fig. 3(b)], indepen-
dent of C&E.

We consider evolution of the triplet {Θl, Qt, Ql}
with advective tendencies evaluated exactly from
{θ, qt, ql} such that the diagnosed advective tendency
of T is linear in time.† In addition, we extend Stevens
et al.’s laminar problem by adding eddy-diffusive mix-
ing:

∂Ψ

∂t
= −U∇ψ + κe∇2ψ,

for Ψ ∈ {Θl, Qt} where

ψ(x, t) = Ψe +
(Ψc − Ψe)

2
erfc

(
x− Ut√

4κet

)

is the analytic solution for the evolution of a cloud-
edge initialized at (x = 0, t = 0), and Ψc (Ψe) repre-
sents unmixed cloud (clear) values.

In contrast, Ql is evaluated numerically according
to

∂Q
(n)
l

∂t
= −U∇ql + κe∇2ql + F (n)

, (18)

†Note that exp{−LvQl/(cp,aT )} = 1−LvQl/(cp,aT ) to good
approximation for the thermodynamic parameters used in Stevens
et al. and here.



Jeffery and Reisner [Do not quote, cite or distribute] 13

where F (n)
, n ∈ {1, 2, 3} represents three different

grid-scale microphysical forcings:

F (1)
=

dQl

dt

{
R ∼ Q

1/3
l

}

F (2)
= LdQl

dt

{
R ∼ Q

1/3
l

}

F (3)
= LdQl

dt

{
R ∼ Q

1/3
l (1 − φsub)2/3

}
,

and L = τreact/max(τeddy, τreact) when dQl/dt < 0

and 1 otherwise. Specifically, F (1)
denotes the usual

grid-scale averaged C&E-forcing with diagnostic rela-

tion R ∼ Q
1/3
l overestimating droplet radius, F (2)

de-
notes the evaporation-limiting EDC model also with

R ∼ Q
1/3
l , and F(3)

denotes the EDC model with
improved diagnosis of R. Straightforward substitu-
tion verifies that the evaporation limiter, L, produces
EDC behaviour in the RH-equation that agrees with
Eq. (8). We diagnose grid-cell cloud fraction crudely
according to φsub(t) = (Ψc − Ψ)/(Ψc − Ψe); this defi-
nition of φsub is exact for κe = 0, questionable other-
wise. Explicit relations for dQl/dt and τreact are given
in Appendix B.

In our implementation of the EDC model described
above and in Appendix B, no attempt is made to
“tune” the evaporation limitation via a constant of pro-
portionality that relates τefold and τeddy, e.g. as per
Eq. (8). Rather, our aim is to provide a first-order as-
sessment of the efficacy of the EDC model in a mix-
ing scenario that includes advection and cross-grid
transport, and that is distinct from Sec. 3. Consis-
tent with the treatment of advection-diffusion (above),
the EDC model is applied at each time step with
τeddy(t) = var(RH)/χ calculated “exactly” from the
fully-resolved subgrid field.

In Stevens et al. (1996)’s original scenario the sin-
gle time-scale τ = L/U describes the purely ad-
vective transport across the grid cell; the addition
of diffusion, here, introduces a second time-scale
τκ = L2/κe. Since, our analysis continues to use τ
as the primary time-scale we consider only Nκ ≤ 0.1
where Nκ ≡ τ/τκ is a non-dimensional measure of
the relative importance of diffusion.

5b. Results

Plots comparing {RH,RH
(1)
,RH

(3)} and
{ql, Q(1)

l , Q
(3)
l } as functions of t/τ for each

Nκ ∈ {0, 0.01, 0.1} are shown in Fig. 8. Before
considering the impact of EDC on grid-averaged
quantities, it is of interest to assess differences in

RH
(1)

for κe = 0 between the present approach
and Stevens et al., as seen in their Fig. 3(b). The

grid-averaged supersaturation, RH
(1) − 1, gently

plateaus near 0.2% in the current approach, while
Fig. 3(b) in Stevens et al. shows a pronounced
supersaturation peak that reaches 1.5%. As dis-
cussed in the previous subsection, the cause of
the enhanced supersaturation oscillation in their
work is the approximation Ql ∼ R3 which causes
grid-average temperatures to be underestimated.

Consequently, RH
(1)

converges to RH in the limit
τ → 0 in the present approach but the opposite
behavior is exhibited in Stevens et al.’s Fig. 3(b).

Fig. 8 also demonstrates the effect of the EDC
model on grid-cell averaged quantities with R diag-
nosed fromQ

1/3
l (1−φsub)2/3. Qualitatively, the agree-

ment between {RH
(3)
, Q

(3)
l } and {RH, ql} is very

good. In particular, EDC limits the large evapora-
tion rates that otherwise cause oscillations in the su-
persaturation field. In fact, for the original Stevens
et al. scenario with κe = 0, the predictions of the
EDC model are exactly correct. Essentially, this is a
trivial limit of the EDC model in 1D where τefold → ∞
as κe → 0.

5c. Statistics

The ability of the EDC model to predict subgrid
evaporation rates is quantified in Table 1 for τ ∈
{32, 181, 1024}, F (1−3)

, and statistics averaged over
τ . In addition to root-mean-square errors in grid-scale

quantities RH
(n)

and Q
(n)
l , Table 1 presents Da

(n)
,

the time-averaged Damköhler number, and θ
(n)
lim, the

fraction of time that τeddy > τreact and evaporation
rates are mitigated. These two statistics indicate that,
for the majority of each grid-cell evolution, Da is large
and the grid-cell largely unmixed for Nκ ≤ 0.1. In
fact the large θlim values imply that the EDC-modeled
evaporation rates for the present scenario are primar-
ily determined by τeddy, independent of τreact.

The standard deviations enumerated in Table 1 in-
dicate that EDC, modeled using either F (2)

or F (3)
,

improves the prediction of grid-scale RH and Ql with-
out exception for the present parameter values. For

κe 6= 0, F (3)
provides uniformly better estimates of

subgrid evaporation than F (2)
.

The results of Table 1 are calculated with τeddy(t)
continuously diagnosed from the resolved subgrid
field. This resolved subgrid information is, of course,
not available in a typical LES/CRM model. In the spirit
of Sec. 3, we consider two models that use a single
τeddy value per simulation: (a) τeddy(t) = 〈τeddy〉τ and
(b) τeddy = 0.05τ/Nκ where 〈·〉τ represents a tempo-
ral average over e-folding time e−1τ . The coefficient
0.05 in (b) is selected (tuned) to produce good perfor-
mance for the present scenario.
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Figure 8: Comparison of RH [Fig. 8(a)] and Ql [Fig. 8(b)] diagnosed exactly from the resolved subgrid field

(thick lines) and computed using grid-cell averaged microphysical forcing with evaporation limitation (F (3)
in

Eq. (18); symbols) and without (F (1)
in Eq. (18); thin lines). Line and symbol types represent different Nκ

values: {—–,2} is Nκ = 0, {- - -,◦} is Nκ = 0.01, and {– –,4} is Nκ = 0.1. Evaporation limitation based on
the EDC model produces {RH, Ql} evolution that agrees closely with the resolved subgrid field. Calculations
performed with τ = 181 s and parameter value from Stevens et al. (1996, Table 1). Note that the thin solid
line overlays the thin dashed line for t < 0.8τ .

To demonstrate that the performance of EDC with
τeddy(t) described by (a) and (b) is comparable to Ta-
ble 1, root-mean-square errors in RH and Ql are cal-
culated over τ ∈ {32, 181, 1024}, Nκ ∈ {0, 0.01, 0.1}
and listed in Table 2. Overall, the three different de-
terminations of τeddy exhibit similar accuracy for the
present scenario. And the sensitivity of all three pa-

rameterizations to F (1−3)
is also similar: F (1) → F (2)

improves performance by a factor of 2–4 and F (2) →
F (3)

improves performance by an additional factor of
1.5–2.

5d. Summary

Stevens et al. construct a novel scenario of purely
advective cloud front propagation across a grid cell
in 1D where spurious oscillations are observed in the
grid-scale prognostic variables {Θl, Qt, R}. They do
not suggest a solution to this problem.

We have shown that the EDC model exactly solves
the non-turbulent problem articulated by Stevens
et al.—and appears to provide good results for the
more general turbulent case—with three important
caveats:

• Stevens et al. use the approximation Ql ∼ R3

in the determination of temperature which intro-
duces a second grid-scale forcing that is inde-
pendent of C&E. We avoid this forcing by using a
different prognostic triplet, {Θl, Qt, Ql}.

• The accuracy of EDC for κe > 0 depends, in turn,
on the accuracy of the subgrid parametrization
for τeddy. Good results using τeddy = 0.05L2/κe

for the present scenario suggest that reasonably
accurate diagnosis of τeddy, while difficult, is fea-
sible.

• The surrogate problem for 3D turbulent trans-
port tested here—advection and eddy-diffusion
in 1D—is of limited complexity. In particular, in-
compressible advection is confined to a constant
and trivial mean sweep in 1D. EDC has yet to be
tested in 3D where advection plays a dominant
role in cascading variance from large to small
scales.
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τ Nκ Da
(2)

Da
(3)

θ
(1)
lim θ

(2)
lim θ

(3)
lim σ

(1)
RH σ

(2)
RH σ

(3)
RH σ

(1)
Ql

σ
(2)
Ql

σ
(3)
Ql

0 ∞ ∞ 0 1 1 1.8 0 0 0.062 0 0
32 0.01 33.6 15.6 0 0.93 0.86 1.4 0.38 0.10 0.048 0.013 0.0036

0.1 5.45 2.4 0 0.87 0.65 0.81 0.43 0.21 0.027 0.015 0.0072
0 ∞ ∞ 0 1 1 2.2 0 0 0.072 0 0

181 0.01 130 60 0 0.95 0.91 1.7 0.56 0.084 0.058 0.019 0.0027
0.1 19.9 8.16 0 0.93 0.89 1.1 0.53 0.084 0.037 0.018 0.0028
0 ∞ ∞ 0 1 1 2.2 0 0 0.072 0 0

1024 0.01 589 275 0 0.94 0.92 1.8 0.67 0.36 0.059 0.023 0.012
0.1 84.1 32.9 0 0.92 0.90 1.1 0.57 0.30 0.037 0.019 0.010

Table 1: Accuracy of the different microphysical forcings, F (1−3)
, for τ ∈ {32, 181, 1024}andNκ ∈ {0, 0.01, 0.1}

as given by (i) σ(1−3)
RH —time-averaged standard deviation of RH (%), and (ii) σ(1−3)

Ql
—deviation of Ql (g/kg).

The use of evaporation limitation in the source terms F (2−3)
improves the prediction of {RH, Ql} in all cases.

Also tabulated are (i) the time-averaged Damköhler number, Da
(2−3)

, where Da(t) = τeddyτreact
−1(1−φsub)−1

with φsub(t) = (Ψc − Ψ)/(Ψc −Ψe), and (ii) the fraction of time that the EDC model limits evaporation, θ(1−3)
lim .

τeddy Da
(2)
/Da

(3)
θ
(1)
lim θ

(2)
lim θ

(3)
lim σ

(1)
RH σ

(2)
RH σ

(3)
RH σ

(1)
Ql

σ
(2)
Ql

σ
(3)
Ql

τeddy(t) 2.28 0 0.95 0.89 1.1 0.44 0.18 0.037 0.015 0.0060
〈τeddy〉τ 2.99 0 1 0.93 1.1 0.20 0.14 0.037 0.0067 0.0046

0.05τ/Nκ 2.98 0 0.99 0.93 1.1 0.28 0.17 0.037 0.0094 0.0059

Table 2: Comparison of the accuracy of three different methods for calculating τeddy: (i) τeddy(t) = var(RH)/χ
calculated without approximation at each time-step from the resolved subgrid field, (ii) τeddy = 〈τeddy(t)〉τ
calculated a priori as an average over e-folding time e−1τ , and (iii) diagnostic relation τeddy = 0.05τ/Nκ.
All three methods exhibit similar accuracies. Standard deviation are averaged over τ ∈ {32, 181, 1024} and
Nκ ∈ {0, 0.01, 0.1}.

6. Summary

Prediction of the turbulent evolution of a mixture of
clear and cloudy air is, fundamentally, a Lagrangian
problem that is of higher dimension than that of typ-
ical reactive scalar systems. The interaction of a
droplet with the surrounding temperature and vapor
fields depends, in particular, on the droplet radius
which is expressed as a Lagrangian path integral
along droplet trajectories. This reveals an essential
difficulty in predicting droplet spectral evolution—and
hence evaporation—at unresolved scales.

In this work we exploit a time-independent droplet
radius approximation—appropriate for RHt > 1, large
drops and small subsaturations—that essentially re-
moves the Lagrangian character from the problem
at hand. In particular, this assumption implies that
cloud front propagation and evaporation is indepen-
dent of the specifics of the droplet size distribution
and a function of only two time-scales, τreact and
τeddy. Two common cloud schemes (i) PDF schemes
that exploit the InC&E assumption and (ii) LES/CRM
schemes that resolve τreact and ignore subgrid cor-
relations make diametric assumptions τefold ∼ τeddy

and τefold ∼ τreact, respectively. We refer to these
relations as the C&E time-scale dilemma: two com-
mon subgrid cloud modeling assumptions, that are in
some sense archetypal, are inherently inconsistent.

The resolution to the C&E time-scale dilemma is
found in the pioneering work of Magnussen and
Hjertager (1976) who first hypothesized the relation
τefold ∼ max(τeddy, τreact) which encapsulates the be-
havior of traditional PDF and resolved C&E schemes
at different limits. We have verified using two very
different conceptual approaches—1D eddy-diffusivity
modeling and a new PDF approach with resolved
C&E—that Magnussen and Hjertager’s EDC model
correctly predicts the evaporation rate for cloud-front
propagation across a grid-cell in the constant radius
limit and in the absence of sedimentation and iner-
tial effects. These results imply that PDF schemes
overestimate evaporation at small Damköhler num-
ber while LES/CRM models that resolve C&E over-
estimate evaporation at large Da.

Although the estimate Da ∼ L2/3 might suggest
that PDF and LES/CRM schemes are correct in typi-
cal small and large grid size limits, respectively, Fig. 1
demonstrates otherwise. For example, at 20 m res-
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olution, the LES/CRM approximation τefold ∼ τreact
becomes invalid at r greater than about 50 µm and
Nc = 50 cm−3; at Nc = 500 cm−3 the LES/CRM
approximation breaks down near 5 µm. In a simi-
lar fashion, PDF schemes that utilize the InC&E as-
sumption are not uniformly valid at L = 1000 m and
typical atmospheric conditions. These results reiter-
ate and substantiate concerns that have been raised
in the cloud physics literature that modeled evapora-
tion rates are too high (Krueger 1993; Stevens et al.
1996), or more generally, are of particular importance
to overall model performance (Stevens et al. 2005).

Implementation of the EDC model in high-
resolution schemes requires modifying the C&E
source term for dql/dt with the evaporation limiter
L = τreact/max(c1τeddy, τreact) when dql/dt < 0; di-
rect substitution verifies that L correctly reproduces
the EDC behavior τefold ∼ max(τeddy, τreact) in the
RH-equation and constant radius limit. Our numeri-
cal simulations suggest c1 ≈ 0.35. This new scheme
additionally requires the diagnosis of (subgrid) τeddy

from the resolved field. We have tested this imple-
mentation of EDC with diagnostic relation τeddy =
c2L

2/κe in a turbulent generalization of the Stevens
et al. (1996) scenario of 1D cloud front propaga-
tion and find very good quantitative results for c2 =
O(0.1). This result is encouraging because L and
κe are already standard computed quantities in many
LES/CRM models. We plan to test the efficacy of this
implementation of EDC in 2D simulations of a non-
precipitating cumulus in the near future using the HI-
GRAD cloud model (Reisner et al. 2001, 2005).

The present work introduces a new PDF-based ap-
proach for modeling cloud mixing and evolution that
is distinct from other PDF cloud schemes in three
important ways: (i) turbulent mixing and C&E are
explicitly resolved, i.e. the InC&E assumption is re-
laxed, (ii) the PDF shape is not specified a priori, and
(iii) the model reproduces EDC behavior in quantita-
tive agreement with 1D eddy-diffusivity simulations.
Analysis of the volume fraction of filaments contain-
ing a mixture of clear and cloudy air suggests that
the present PDF approach is, effectively, a higher
Reynolds number simulation than the corresponding
eddy-diffusivity simulations.

Although our new model of the RH-PDF, P(RH),
plays an important but supporting role in this article
it provides new information that will be further inves-
tigated in subsequent articles in this series. As an
illustrative example, a plot of the evolution of P(RH)
calculated at Da = 100 is shown in Fig. 9. The
figure reveals that our new PDF approach success-
fully resolves in probability space the extremely small
volume-fraction filaments where mixing is occurring—
a feature that has proved difficult to capture in Eule-

rian spatial models. Together with the parameteriza-
tion for 〈N |RH〉, Eq. (14), P(RH) provides the dis-
tribution of subsaturations experienced by a popu-
lation of droplets. Thus, in principle, our PDF ap-
proach allows for the complete evaporation of some
drops while others remain unchanged; this is the “in-
homogeneous mixing” process of Baker et al. (1980).
However, further progress in this direction requires
the development of a Lagrangian droplet model that
lives in RH-probability space and which removes the
constant droplet radius assumption employed in this
study. This line of investigation is currently being pur-
sued.
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Figure 9: Plot of RH-PDF evolution calculated us-
ing Eq. (12) and the present PDF model with Da =
100, RHenv = 0.6 and φsub = 0.5. Four snap-
shots are shown for τ ∈ {0.01, 0.24, 0.47, 0.7} where
τ = t/τeddy. At τ = 0.7 very little of the pure environ-
mental air is left although this is masked in the figure
by the overlap of lines at RH = RHenv.
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A. The InC&E assumption and
cloud evaporation

The analog of Eqs. (6) for subgrid PDF schemes that
use the InC&E assumption is

∂RHt

∂t
= κe∇2RHt

RH = min(1,RHt),
(19)

with ql ∼ Γ(RHt − 1)(RHt − 1) where Γ is a step
function. To generate the shaded regions in Fig. 2,
Eqs. (19) are first solved using 1 Front and 2 Front
initial conditions for ∆ql ∈ [0.01, 0.30]ql and a distribu-
tion of φsub. The range of τefold shown in Fig. 2 is then
calculated by averaging over φsub.

B. Microphysical relations for
Sec. 5

Let
dQl

dt
= 4π

ρw

ρa
NcR2 dR

dt
,

with

dR
dt

= crQs
ρa

ρw
Dv

RH − 1

R + a

cr =

{
1 +

Dv

Da

(
Lv

RvT
− 1

)
Lv

cp,aT
Qs

}−1

,

and parameter values Nc = 100 cm−3, a = 2 µm,
and thermodynamics parameters as in standard texts
(Pruppacher and Klett 1997).

Then the diagnosis of R in F (1−3)
obeys

F (1−2) → R = R

F (3) → R = R(1 − φsub)2/3,

with

R =

(
3

4π

ρa

ρw

Ql

Nc

)1/3

,

and

τreact =
1

4πDvNc

R + a

R2
.

C. Determination of β

A prediction for the Da dependence of β follows from
consideration of the behavior of the first two moment

of RH as predicted by the evolution of the map, X .
Combining Eqs. (11), (13) and (14) gives

∂〈RHn〉
∂τ

= −2χτeddyδn,2 +

∫ ∞

−∞

P0(RH0)dRH0 nF (t)

Da

(
X − RHenv

1 − RHenv

)β

Xn−1(1 −X), (20)

with n ∈ {1, 2}. We can gain insight into the dynamics
of Eq. (20) by considering the production and dissipa-
tion of variance implied by the approximate exponen-
tial traveling wave solution:

X(RH0) =

{
c1 exp [λ(RH0 − vt)] + RHenv RH0 < vt
1 otherwise

with c1 = (1 − RHenv) and v < 0. Assuming β � 1
and λ � 1 such that P0(RH0) is a constant in Eq. (20)
gives

∂var(RH)

∂τ
= −2χτeddy+2DaP0(vt)F (t)

(1 − RHenv)
2

λβ2
(1−RH).

(21)
The two terms on the rhs of Eq. (21) represent the im-
pact of eddy-diffusion and evaporation on var(RH) as
the cloud-front propagates across the domain. The
EDC model and the results of Sec. 3 indicate that
evolution of var(RH) should become independent of
Da as Da → ∞ for the unmixed initial conditions con-
sidered here. Along with Eq. (21), this implies the
scaling β ∼ Da

1/2.
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